Open Constraint Satisfaction

Boi Faltings and Santiago Macho-Gonzalez

Artificial Intelligence Laboratory (LIA),
Swiss Federal Institute of Technology (EPFL),
IN-Écublens, CH-1015 Écublens, Switzerland,
boi.faltings@santi.macho@epfl.ch,
http://liaww.epfl.ch/

Abstract. Traditionally, constraint satisfaction has been applied in closed-world scenarios, where all choices and constraints are known from the beginning and fixed. With the Internet, many of the traditional CSP applications in resource allocation, scheduling and planning pose themselves in open-world settings, where choices and constraints are to be discovered from different servers in a network.
We examine how such a distributed setting affects the assumptions underlying most CSP algorithms, and show how solvers can be augmented with an information-gathering component that allows open-world constraint satisfaction. We report on experiments that show strong performance of such methods over others where gathering information and solving the CSP are separated.

1 Constraint Satisfaction in Distributed Information Systems

Constraint satisfaction has been applied with great success to resource allocation, scheduling, planning and configuration. Traditionally, these problems are solved in a closed-world setting: first all variables, domains, constraints and relations are defined, then the CSP is solved by a search algorithm.
With the increasing use of the Internet, many of the problems that CSP techniques are good at now pose themselves in a distributed setting. For example, in personnel allocation, it is possible to obtain additional staff on short notice. In configuration, it is possible to locate additional suppliers of parts through the Internet.
This change in setting makes a fundamental difference to the underlying constraint satisfaction problem. Most successful CSP methods, in particular constraint propagation, are based on the closed-world assumption that the domains of variables are completely known and fixed. In an open setting, this assumption no longer holds. Thus, it is not straightforward to integrate information gathering with CSP solving algorithms.
There are also fundamental questions about the semantics of a CSP. When we combine options for a CSP from different sources, one might suspect that the right way to form the combination would be to form a CSP whose solutions
are the union of the solutions of the CSPs being combined. However, this would
not make sense if we are trying to add options to make an unsolvable problem
solvable.

In this paper, we define Open Constraint Satisfaction Problems (OCSP). We
examine relevant related work in the CSP and database communities, and then
propose solutions for two major issues: the semantics of combining CSP, and
integrating information gathering and solving of OCSP. Finally, we report on
some initial experiments that show the strong performance gains that OCSP
bring over carrying out information gathering and CSP solving sequentially.

2 Open Constraint Satisfaction Problems

In this section, we define a formal framework for open constraint satisfaction
problems.

![Diagram of CSP Solver, Mediator, and Information Servers]

Fig. 1. Elements of an open constraint satisfaction problem

We consider the setting shown in Figure 1 which reflects the important ele-
ments that occur in an open setting. The CSP solver can access an unbounded
set of information servers through a mediator. The mediator is a directory that
indexes the information that can be found on the information servers. Such di-
rectories already exist in unstructured form (Yahoo), and industry is working
towards formal models based for example on the UDDI standard. For the pur-
poses of our research, we consider that this technology implements a functionality
whereby the CSP solver can obtain additional domain values:

- using the `more(vi,..., (vi,vj),...)` message, it can request the mediator
to gather more values for these variables. The mediator will then contact
randomly selected information servers. While servers are selected randomly,
any server on the network will eventually be contacted.
- using `options(vi,...)` and `options((vi,vj),...)` messages, the media-
tor informs the CSP solver of additional domain values or constraint tuples
found in the network. This response will return what was found on the
servers, so it may be empty or not contain any new values.
when there are no more values to be found, the mediator returns `nomore(vi, ...)`
to inform the problem solver of this.

Note that as we assume an unbounded number of information sources, it
is not even possible to gather all information in a single database and then
start the problem-solving process, as has been implemented in many distributed
information systems ([1, 2, 4]).

We now define:

Definition 1. An open constraint satisfaction problem (OCSP) is a possibly
unbounded, partially ordered set \{CSP(0), CSP(1), ...\} of constraint satisfaction
problems, where CSP(i) is defined by a tuple \(#X, C, D(i), R(i)#\) where

- \(#X = \{x_1, x_2, ..., x_n\}\) is a set of \(#n\)# variables,
- \(#C = \{(x_i, x_j, \ldots, x_k, x_l, \ldots)\}\) is a set of \(#m\)# constraints, given by the or-dered sets of variables they involve,
- \(#D(i) = \{d_1(i), d_2(i), ..., d_n(i)\}\) is the set of domains for CSP(i), with \(#d_k(0) = \{\}\#\) for all \(#k\).
- \(#R(i) = \{r_1(i), r_2(i), ..., r_m(i)\}\) is the set of relations for CSP(i), each giving the list of allowed tuples for the variables involved in the corresponding
 constraints, and satisfying \(#r_k(0) = \{\}\#\) for all \(#k\).

The set is ordered by the relation \(<\) where CSP(i) \(<\) CSP(j) if and only if \((\exists k \in \#1..n\#) \#d_k(i) \subseteq d_k(j)\), \((\forall k \in \#1..m\#) \#r_k(i) \subseteq r_k(j)\), and either \((\exists k \in \#1..n\#) \#d_k(i) \subset
 d_k(j)\) or \((\exists k \in \#1..m\#) \#r_k(i) \subset r_k(j)\).

A solution of an OCSP is a combination of value assignments to all variables
such that for some \(#i\), each value belongs to the corresponding domain and all value
combinations corresponding to constraints belong to the corresponding relations
of CSP(i).

3 Related work

Within the CSP community, the work that is closest to ours is interactive con-straint satisfaction (ICSP), introduced in [5]. Similarly to our work, in ICSP
domains are acquired incrementally from external agents. The forward checking
algorithm is modified so that when domains become empty, it launches a specific
request for additional values that would satisfy the constraints on that variable.
In earlier work ([6]), the same authors also show how arc consistency algorithms
can be adapted with the right dependency structures so that consistency can
be adapted to values that might be added later. However, ICSP has a strong
focus on the efficiency of the CSP search algorithm rather than on minimizing
information gathering where it typically gathers significantly more values than
necessary. It also does not address the problems of an open environment, in par-ticular it limits itself to finite domains and assumes that all values for a domain
can be retrieved by the information agents.

Open constraint satisfaction bears some resemblance to the dynamic con-straint satisfaction problem (DCSP), where constraints are added and removed
over time. Bessiere ([7]) has shown methods for dynamically adapting consistency computations to such changes. However, dynamic CSP methods require that the set of all possible domain values is known beforehand, and thus do not apply to the OCSP problem. Another major difference is that OCSPs are restricted to a monotonic ordering of domains and values.

Another related area is distributed CSP (DisCSP), investigated in particular by Yokoo ([9]) and more recently also other researchers. DisCSP does not require agents to announce the complete variable domains beforehand, so by its formulation it would also allow them to be open. However, all known search algorithms for solving DisCSP rely on closed-world assumptions over variable domains for initiating backtracks. As DisCSP also require each variable to be controlled by a single agent, they also assume that all domain values are known and fixed by a single agent during the search, and so they do not address the context posed by OCSP either.

There has been some research into using constraints as a formalism for representing and integrating information, in particular the KRAFT project ([10]) and the FIPA CCL content language ([11]). These address in particular issues of how to represent constraints in languages such as XML, so that it is easy to carry out composition. They will be important for practical implementations of OCSP.

Research in the database community has addressed issues of information gathering and information retrieval, starting with federated databases ([12]), then dynamic information integration ([13,1]), and finally multi-agent information systems such as InfoSleuth ([2,3]). Significant work has gone into matchmaking between queries and information sources. In our research, we use an ontology-based classification similar to that of [14]. There are significantly more complex matchmaking techniques such as the Information Manifold ([4]), Decker and Sycara ([15]) investigate the efficiency of middle-agent systems, and Sycara ([16]) elaborates on their use as information agents. Techniques such as LARKS ([17]) show that much more complex classification than simply ontologies are possible. Thus, there is a sufficient technology base for implementing the mediator functionality we assume in this paper.

Recently, researchers in information retrieval have paid more attention to driving information retrieval from the task that users are trying to solve. Systems such as Watson and I2I ([18]) and just-in-time information retrieval ([19]) automatically retrieve information from databases, mail archives and other information sources by matching it with keywords that occur in the current activity of the user - for example, a document being prepared.

4 Using CSP for Information Integration

Solving OCSP implies that CSPs from different sources must be integrated. We assume that the mediator performs the necessary translations so that it returns additional options as domains and relations of a CSP whose variables and constraints are compatible with those of the problem being solved.
There are two different ways that the new domains and relations might be integrated:

- **conjunctive combination**, meaning that the new information represents additional constraints that any solution must satisfy. This occurs for example when we want to schedule a meeting between many participants and need to integrate all their time constraints.
- **disjunctive combination**, meaning that the new information represents additional options and thus enables additional solutions. This occurs for example when a problem-solver obtains schedule information for the same route from different airlines.

Conjunctive combination is a common case in constraint satisfaction algorithms and handled simply by having all relations present simultaneously. Dynamically adding and removing constraints using conjunctive combination has been addressed for example in dynamic constraint satisfaction ([8, 7]). For solving OCSP, we particularly need disjunctive combination, which so far has not received much attention in the CSP community (but see [10, 11]).

CSP formulations have commonly been compared through the solutions they admit ([20]). This works well for conjunctive combination, where the solutions of the combined problem is the intersection of the solutions of the components, but is too restrictive for disjunctive combination: when we are looking for additional options to make a scheduling or configuration problem solvable, we are often combining subproblems that have no solutions to obtain a problem that has solutions.

Thus, in accordance with the definition of OCSP, we define the disjunctive combination of two CSP as follows:

Definition 2. The disjunctive combination of CSP1 = \(< X_1, D^1, C_1, R^1 >\) and CSP2 = \(< X_2, D^2, C_2, R^2 >\) is CSP3 = \(< X_3, D^3, C_3, R^3 >\) where

- \(X_3 = X_1 \cup X_2\)
- \(D^3 = \{d^3_j | x_j \in X_1 \land x_j \notin X_2\} \cup \{d^1_j | x_j \in X_2 \land x_j \notin X_1\} \cup \{d^2_j | x_j \in X_1 \cap X_2\}\)
- \(C_3 = C_1 \cup C_2\)
- \(R^3 = \{r^3_j | c_j \in C_1 \land c_j \notin C_2\} \cup \{r^1_j | c_j \in C_2 \land c_j \notin C_1\} \cup \{r^2_j | c_j \in C_1 \cap C_2\}\)

The difficulty with disjunctive combination is that it is incompatible with the pruning and constraint propagation techniques that have been fundamental to most constraint satisfaction algorithms, and requires additional restrictions on the model in order to give the desired results. The example in Figure 2 illustrates the difficulties.

In CSP1, we can use constraint propagation to prune values \(c\) from variable \(x_2\) and then tuple \((c, a)\) from constraint \(c_2\). When we later combine with CSP2, we do not obtain any additional solutions. But if we had combined with CSP1 without pruning, we would have also obtained the solution \(x_1 = b, x_2 = c, x_3 = a\).

The problem here is that pruning relies on a closed-world assumption: it does not eliminate valid solutions, but only under the condition no additional options are
added. While it is easy to recognize this situation when solving a CSP, we have to avoid cases where pruning has already been incorporated in the constraint model. In order to characterize this property, we define:

Definition 3. A CSP is redundantly expressed if it contains a relation or domain whose validity depends on other relations or domains in the CSP.

A constraint model can also pose problems in the other direction. Consider that CSP1 might have originally had an additional constraint C3. In the database model, this constraint could have been removed as being redundant; it already follows from C1 and C2. When we now combine with CSP2, we would also obtain the new solution \(x_1 = b, v_2 = c, v_3 = a \), which would violate the original constraint C3. To avoid this situation, we define:

Definition 4. A CSP is completely expressed if and only if for any pair of variables \(x \) and \(y \) and any pair of values \(x = a \) and \(y = b \) allowed by the constraint (if any) between them, there is a way to change the rest of the CSP so that they become part of a valid solution.

In order to be composable, CSP models have to be exactly expressed:

Definition 5. A CSP is exactly expressed if and only if it is completely but not redundantly expressed.

as is shown by the following Theorem:

Theorem 1. The disjunctive combination of two exactly expressed CSPs is itself exactly expressed.
Proof. Disjunctive combination does not involve constraint propagation nor elimination of redundancies, so it does not affect the property of being correctly expressed.

This defines a restriction that the CSPs provided by the mediator as well as the CSP representations maintained while solving an OCSP must satisfy. Unfortunately, it turns out that this condition rules out the use of many interesting constraint propagation and preprocessing techniques. However, we will now see that there are other techniques that can be applied.

5 Algorithms for solving OCSP

We now consider algorithms for actually solving OCSP. The simplest algorithm is the brute-force algorithm: first collect all values from all information sources, and then run an efficient CSP solver to generate a solution to the problem. However, this can be very costly: imagine contacting all PC part manufacturers to figure out how to fix your video card!

It is clearly preferable to only gather information as needed, as shown by function o-search (Algorithm 1). If there is a solution within the values available from the servers, this algorithm will eventually find it, since the mediator will eventually return every value or value combination that the servers can provide. However, it is not very efficient, since it blindly gathers values for any part of the CSP without focussing on those parts that caused the failure, and it solves every new CSP from scratch.

We now investigate how we can obtain more efficient algorithms by strengthening the connection between the solving process and information gathering. In particular, we consider improvements in two aspects:

- using a trace of the failed search to direct information gathering,
- reusing earlier search effort to reduce complexity of searching for solutions.
5.1 Integrating search and information gathering

In order to simplify the algorithms, we make the assumption that all domains of the OCSP are discrete, and that furthermore all constraints (including binary ones) have been encoded using the hidden variable encoding ([20, 21]). In this encoding, all constraints are represented as additional variables with tuple-valued domains representing the corresponding relations. The only remaining constraints are then equality constraints that ensure consistency between assignments to the original variables and the corresponding elements of the constraint tuples. Besides the fact that the hidden variable encoding has been shown to have desirable computational properties ([22]), it simplifies the OCSP formulation since now all constraints are fixed, and information gathering only concerns variable domains.

When a CSP has no solution, it is often the case that it contains a smaller subproblem that already has no solution. It will not be possible to create a solution by information gathering unless values are added to variables and relations of that subproblem. This fact can be used to more effectively drive information gathering. The idea is to find a variable that must be part of an unsolvable subproblem as a promising candidate for adding extra values. To develop this into a general and complete algorithm, we need to address two issues: how to identify unsolvable subproblems, and how to select all variables in turn to avoid unbounded information accesses while missing a feasible solution.

The following lemma provides the basis for identifying variables that are part of unsolvable subproblems:

Lemma 1. Let a CSP be explored by a failed backtrack search algorithm with static variable ordering \((x_1, \ldots, x_n) \), and let \(x_k \) be the deepest node reached in the search with inconsistency detected at \(x_k \). Then \(x_k \), called the failed variable, is part of every unsolvable subproblem of the CSP involving variables in the set \(\{ x_1, x_k \} \).

Proof. In order to reach \(x_k \), the search algorithm has constructed at least one valid assignment to \(x_1, \ldots, x_{k-1} \), so this set of variables does not contain any unsolvable subproblem. However, there is no consistent assignment to \(x_1, \ldots, x_k \), so this set does contain unsolvable subproblem(s). Since the only difference is \(x_k \), \(x_k \) must be part of all of these unsolvable subproblems. \(\square \)

On the basis of this proposition, we can use the results of a failed CSP search process to determine for which variable additional values should be collected. These are then passed to the mediator, which will search for relevant information on the network. When there are no additional values for this variable, the mediator returns a no more message, and other variables are then considered. The resulting algorithm fo-search (failure-driven open search) is shown in Algorithm 2.

Algorithm 2 makes the assumption that variables are ordered by the index \(i \). It assumes that no consistency techniques are used in the search, although the chronological backtracking can be replaced with backjumping techniques to make it more efficient.
1: Function \textbf{fo-search}(X,D,C,R,E)
2: \hskip 0.5cm $i \leftarrow 1, k \leftarrow 1$
3: \textbf{repeat} \{backtrack search\}
4: \hskip 0.5cm \textbf{if} \ exhausted(d_i) \ \textbf{then} \{backtrack\}
5: \hskip 0.5cm \hskip 0.5cm i \leftarrow i - 1, reset \leftarrow \text{values}(d_i)
6: \hskip 0.5cm \textbf{else}
7: \hskip 0.5cm k \leftarrow \max(k, i), x_i \leftarrow \text{nextvalue}(d_i)
8: \hskip 0.5cm \textbf{if} \ consistent\{\{x_1, \ldots, x_i\}\} \ \textbf{then} \{extend assignment\}
9: \hskip 0.5cm \hskip 0.5cm i \leftarrow i + 1
10: \hskip 0.5cm \textbf{if} \ i > n \ \textbf{then}
11: \hskip 0.5cm \hskip 0.5cm \textbf{return} \{x_1, \ldots, x_n\} \ as \ a \ solution
12: \hskip 0.5cm \textbf{until} \ i = 0
13: \hskip 0.5cm \textbf{if} \ e_k = \text{closed} \ \textbf{then}
14: \hskip 0.5cm \textbf{return} \ failure
15: \hskip 0.5cm \textbf{else}
16: \hskip 0.5cm nu \leftarrow \text{more}(x_k)
17: \hskip 0.5cm \textbf{if} \ nu = \text{nomore}(x_k) \ \textbf{then}
18: \hskip 0.5cm e_k \leftarrow \text{closed}
19: \hskip 0.5cm d_k \leftarrow nu \cup d_k
20: \hskip 0.5cm \textbf{reorder variables so that } x_k \ \text{becomes } x_i
21: \hskip 0.5cm \textbf{fo-search}(X,D,C,R,E) \ \{search again\}

Algorithm 2: Function \textbf{fo-search} for solving OCSP.

We are now going to show that \textbf{fo-search} is a complete algorithm for solving OCSP. We start by defining:

\textbf{Definition 6.} An unsolvable subproblem of size k of an instance CSP(i) of an OCSP is a set of variables $S = \{x_1, x_2, \ldots, x_k\}$ such that there is no value assignment $(x_1 \in d_{a_1}, \ldots, x_k \in d_{a_k})$ that satisfies all constraints between these variables.

and showing the following property:

\textbf{Lemma 2.} Let $S = \{S_1, \ldots, S_m\}$ be the set of unsolvable subproblems of instance CSP(i) of an OCSP. Then for any instance CSP(j), $j > i$, the set of unsolvable subproblems S' it contains is a subset of S.

\textit{Proof.} Suppose that CSP(j) contains a subproblem $S' \not\in S$, and let $S' = \{x_1, \ldots, x_k\}$. By Definition 1, the domains $d_{a_1}(i) \subseteq d_{a_1}(j)$, ..., $d_{a_k}(i) \subseteq d_{a_k}(j)$. S' is solvable in CSP(i), and the values used in its solution must also be part of the corresponding domains for CSP(j). Thus, S' cannot be unsolvable in CSP(j). \hfill \Box

This Lemma shows that the set of unsolvable subproblems in successive instances of an OCSP is monotonically non-increasing.

We now consider more closely Algorithm 2, and in particular the sequence of instances it solves in subsequent iterations. We have the following lemma:
Lemma 3. Assume that the last \(k + 1 \) calls to Algorithm 2 have been with instances \(\text{CSP}(i), ..., \text{CSP}(i + k) \), that the algorithm has last searched variables in the order \(x_{j1}, ..., x_{jk} \), and identified the \(k \)-th variable \(x_{jk} \) as the failed variable, and that the each of the instances \(\text{CSP}(i), ..., \text{CSP}(i + k) \) has identical unsolvable subproblems. Then:

- in the last \(k \) calls, Algorithm 2 has called the mediator (function more) exactly once for each of the variables \(x_{j1}, ..., x_{jk} \);
- \(S = \{ x_{j1}, ..., x_{jk} \} \) is a minimal unsolvable subproblem of \(\text{CSP}(i + k) \);
- the algorithm will continue to call more on each of the variables in \(S \) in turn until \(S \) becomes solvable.

Proof. As the algorithm always puts the variable for which it has called more values as the first in the search, the first claim follows directly from the function of the algorithm.

Furthermore, \(S \) is unsolvable as no solution could be found by complete search. Suppose that it was not minimal, i.e. that there was a variable \(x_{jl} \) such that \(S' = S - x_{jl} \) was also unsolvable. \(x_{jl} \) was the failed variable when \text{fo-search} was run on \(\text{CSP}(i + l) \), and that search must have included variable \(x_k \).

By Lemma 1, \(x_k \) was part of every unsolvable subproblem of \(\text{CSP}(i + l) \) that also involves \(x_{lk} \). But as \(x_{lk} \) is the failed variable of subproblem \(S \), by Lemma 1, it is part of every unsolvable subproblem involving variables in \(S \). Consequently, every unsolvable subproblem within \(S \) must also involve \(x_{jl} \).

The third claim follows from the fact that as long as \(S \) is unsolvable, running \text{fo-search} on \(\text{CSP}(i + k) \) gives an identical result as running it on \(\text{CSP}(i) \). \(\square \)

We can now show completeness of Algorithm 2:

Theorem 2. Supposed that \(\text{OCSP} \) is solvable, i.e. by calling more on every variable a sufficient number of times we eventually reach an instance \(\text{CSP}(j) \) such that for all \(m \geq j \), \(\text{CSP}(m) \) contains no unsolvable subproblems. Then Algorithm 2 will eventually terminate with this solution.

Proof. \(\text{CSP}(1) \) has finitely many variables and thus finitely many unsolvable subproblems of size at most \(n \). Assume that the algorithm never finds a solution; then since by Lemma 2, the set of unsolvable subproblems is monotonically non-increasing, there must exist an infinite sequence of calls to \text{fo-search} such that the unsolvable subproblems are always identical. By Lemma 3, in such a sequence the algorithm will eventually call for additional values for each variable of the same unsolvable subproblem \(S \). But since the \(\text{OCSP} \) is solvable, these calls must eventually return values that will make \(S \) solvable. Thus, the sequence of calls where subproblems remain unsolvable cannot be infinite. \(\square \)

An interesting consequence of Theorem 2 is that if a problem is unsolvable and the set of available values is finite, the algorithm will stop while identifying a minimal unsolvable subproblem. This can be useful for deciding where an unsolvable problem should be relaxed to make it solvable.
For efficiency reasons, it may be advantageous for the mediator to obtain values not only for single variables, but entire subproblems with a single query. In this case, Algorithm 2 can be modified to not gather any additional values until a minimal unsolvable subproblem is identified, and then calling the mediator on that subproblem.

5.2 Efficiently integrating new values

Once additional values have been obtained, the search algorithm can be restarted to see if the problem now has a solution. We would of course like this search to avoid reexploring the search space that had already been explored unsuccessfully earlier. The most obvious solution, reusing the nogoods observed from the earlier search, is not practical since these nogoods may be invalidated by the new values.

The technique of decomposing a CSP into subproblems proposed by Freuder and Hubbe in [24] turns out to be useful here. They proposed to decompose a CSP to factor out unsolvable subproblems, thus limiting search effort to a smaller and solvable part. This idea applies well to O CSP: the new, combined problem can be decomposed into the old problem just searched (which is known to be unsolvable) and a new one based on the values just obtained. This is formalized by the following proposition, which reformulates the results of [24] for our problem:

Proposition 1. Let a CSP P_{old} be updated by adding to a variable $x_i \in CSP$ the values \{x_1, ..., x_n\}, resulting in the new CSP P_{new}. Then the solutions

$$sol(P_{new}) = sol(P_{old}) \cup sol(P_{incr})$$

where P_{incr} is the CSP \(<X', D', C', R'>\) with

- $X' = X$
- $D' = \begin{cases} D(x_j) & \text{for } j \neq i \\ \{x_1, ..., x_n\} & \text{for } j = i \end{cases}$
- $C' = C$
- $R' = R$

Proof. See [24].

However, if we limit subsequent searches only to the newly found values for x_i, we loose the benefit of Lemma 1 and the algorithm is no longer complete. We can nevertheless use the subproblem decomposition to make algorithms more efficient by ordering the values so that the new values are explored first. In this way, the algorithm starts search with the new subproblem, and only revisits earlier assignments when this subproblem has been found to have no solution.
6 Experimental results

We tested the performance of the techniques we described on synthetic, randomly generated constraint satisfaction problems. As an example, we used resource allocation (equivalent to list coloring), which can be modelled as a CSP whose variable domains are resources and whose constraints are all inequalities (expressing the fact that the same resources cannot be used for different tasks at the same time).

Comparison metrics We compare the algorithms on two aspects. The first is the number of accesses to information sources required to find a solution to the OCSP, and measure the network traffic generated. Several metrics have been developed in the field of database selection ([25]). Since each variable must have at least one value, solving the CSP requires at least one information source access per variable, and this is the theoretical optimum. We measure performance by the degree to which it is above this optimum, i.e.:

\[R = \frac{\text{Number of access to IS until a solution is found} - \text{Number of variables}}{\text{Number of variables}} \]

Large values of R mean low efficiency, and the highest possible efficiency is reached when R=0 when no accesses could have been saved. We consider that R provides a good measure of the relative amount of information gathering effort generated by the different methods, but it does not take into account possible parallelization or buffering.

Experiments and results The experiments followed the following steps:

1. Generate a random coloring problem, with between 3 to 10 variables, 3 to 13 values per variable, and random inequality constraints so that the graph is at least connected and a most complete.
2. Distribute the values of the variables in a fixed set of n information sources. The results reported here are for 12 information sources, but do not change substantially when the number of sources is increased or decreased.
3. Use different algorithms to find the first solution to the problem, and measure the efficiency ratio described further below.

We compare the performance of different combinations of algorithms in the mediator and the problem solver. For the mediator, we consider the following algorithms:

- Brute Force: gather all values from all relevant information sources into a single database, then search for a solution with these values.
- Random: The mediator considers only information sources indexed under the given property and concept, and treats them in random order.
- Size: The mediator considers the same information sources as above, but in decreasing order of the number of values they carry for the different properties.
For the problem solver, we consider the two algorithms given earlier, namely OS for o-search, obtaining new values for variables randomly, and FO for fo-search, where search for new values is driven by the failures of backtrack search.

![Graph showing efficiency ratio against number of values for several combination of search/mediator algorithms.](image)

Fig. 3. Efficiency ratio against number of values for several combination of search/mediator algorithms.

Figure 3 plots the efficiency ratio against the average number of values available for each variable for a setting in which there are a total of 12 information servers. The more values there are for each variable, the easier the problem is to solve, and we can see that the average efficiency in general increases with the number of available values. On the other hand, efficiency can be observed to decrease slightly with the size of the problem. We have not observed any significant dependency of information server accesses on constraint density.

When problem-solving and information gathering are not coupled at all, problem-solving would require accessing all the servers, resulting in an efficiency ratio of 12; this curve is not shown in the graph in Figure 3. Thus, the idea of coupling the two processes definitely provides very large efficiency improvements.

The best method is, as expected, a combination of failure-driven open search combined with an indexing of the database on size; this gives an efficiency approaching the theoretical optimum. It appears furthermore that information about the size of information servers plays a bigger role than directing the search for the right variable, as the next runner-up is the algorithm combining size with open-search (OS). In practice, this information is very difficult to provide, so that
the improvements obtained by the CSP search algorithm are of great practical interest.

7 Conclusions

Many new and exciting applications in open information systems, in particular the WWW, address problems which CSP techniques are very good at solving. Such applications will appear increasingly with the emergence of web services and the semantic web. We have defined Open Constraint Satisfaction Problems (OCSP) as a formulation that addresses this open setting.

The straightforward solution is to first gather all information and then run a CSP solver, either centrally or distributed. This can result in much unneeded information gathering, as many values may never be needed for a solution.

We have investigated how to integrate information gathering with the constraint satisfaction problem solver in order to increase the efficiency of accessing information servers. Because the closed world assumption underlying most CSP techniques contradicts with the openness of the problem, this integration is not straightforward and poses additional requirements on the modeling and on the way that search effort can be reused.

Our main contribution is to have defined the simple semantic properties that allow incrementally building up an OCSP while maintaining a correct solution set, along with several algorithms for solving it. We have shown on random problems that the techniques provide impressive efficiency gains over a situation where information gathering and constraint solving are decoupled.

In particular, the gains tend to increase with both the number of information servers and the number of values they provide. Thus, the technique is likely to be particularly useful to improve the scalability of intelligent information systems.

References