Auction Based Mechanisms for Dynamic Task Assignments in Expert Crowdsourcing

CONFERENCE PAPER · MAY 2015

2 AUTHORS, INCLUDING:

Sujit Gujar
École Polytechnique Fédérale de Lausanne

24 PUBLICATIONS 63 CITATIONS

Available from: Sujit Gujar
Retrieved on: 17 August 2015
Auction Based Mechanisms for Dynamic Task Assignments in Expert Crowdsourcing

Sujit Gujar and Boi Faltings
LIA, EPFL
Lausanne, Switzerland

Abstract. Crowdsourcing marketplaces link large populations of workers to an even larger number of tasks. Thus, it is necessary to have mechanisms for matching workers with interesting and suitable tasks. Earlier work has addressed the problem of finding optimal workers for a given set of tasks. However, workers also have preferences and will stay with a platform only if it gives them interesting tasks. We therefore analyze several matching mechanisms that take into account workers’ preferences as well. We propose that the workers pay premiums to get preferred matches and auction-based models where preferences are expressed through variations of the payment for a task. We analyze the properties of two matching different mechanisms: Split Dynamic VCG (SDV) and e-Auction. We compare both the mechanisms with Arrival Priority Serial Dictatorship (APSD) empirically for efficiency.

1 Introduction

Crowdsourcing has emerged as a new paradigm in getting work done, where human agents solve tasks that are difficult to solve by software agents. Crowdsourcing is used in numerous applications. For example, hand written character recognition is easy for humans, but it is difficult for software. Real-time applications like VizWiz [2] leverage crowdsourcing to gather specific information from an image.

In the crowdsourcing market, there are two types of users of the platform, a requester, the one who posts and a worker, the one who seeks to work on the tasks. Typically, the term crowdsourcing refers to settings where the requesters post simple microtasks which can be performed quickly by human workers. With the success in crowdsourcing, it is becoming prevalent to crowdsource complex macro tasks which is referred to as expert crowdsourcing [20]. For example, oDesk, topcoder are expert crowdsourcing platforms. Consider the following scenario of an expert crowdsourcing as shown in Fig. 1.

Example 1. On a Monday morning three requesters login to a crowdsourcing platform with their tasks. These tasks are to develop software modules and are having deadlines in two weeks. w₁, w₂ and w₃ are eligible and interested workers for these tasks. The worker w₃ prefers to work on r₁ then r₂, r₃. Similarly the other workers have preferences over the tasks, as shown in Fig. 1. w₁ is available from Monday morning till Tuesday evening for the task assignment, where as w₂ and w₃ are present only on Monday and Tuesday respectively. The goal is to optimally assign the tasks to the dynamic workers.
Fig. 1. An expert crowdsourcing scenario with three tasks and three workers

As seen from the above example, workers have preferences over the tasks they are assigned. One of the important advantages for the workers is to select tasks of their own choice. The prior work for the task assignments in crowdsourcing is mainly focused on catering to the requesters’ needs, i.e., addresses concerns with quality of the workers and the answer aggregation. It takes into account the workers’ reputation and the requesters’ requirements and budgets. In this paper, we address the task assignment problem in crowdsourcing catering to the workers’ preferences.

Task Assignments With The Workers’ Preferences. Difallah et al. [4] proposed to push the tasks to the workers based on their preferences. These are only categorical preferences and not the workers’ preferences for the requesters. The authors do not address strategic nature of the workers. Gujar and Faltings [8] addressed the strategic and dynamic workers. The authors model the problem as a two sided matching without money to achieve stability. In this paper, we consider task assignment to dynamically arriving workers. The dynamic workers are of two types, namely \textit{exogenous} and \textit{endogenous}.

(i) The exogenous workers do not lie about their arrival-departure. (ii) The endogenous workers can report late arrival or early departure if its beneficial for them. \footnote{The workers has to be logged into the system for his availability and hence cannot report early arrival or late departure.} The goal in this paper is to improve efficiency, the valuation that workers assign to their assigned tasks, in task assignments to dynamic workers of an expert crowdsourcing platform.

We propose that workers pay a \textit{premium} to the platform to obtain a preferable match. We refer to such task assignment with side payments as a \textit{matching mechanism}. A matching mechanism is designed to induce a truthful behaviour among the workers and achieve efficiency. Note that these side payments to the platform are different than the payments (\textit{rewards} in crowdsourcing terminology) by the requesters to the workers for successful completion of a task. In a matching mechanism, instead of monetary transfers, one can use an indirect credit system. E.g., the workers can earn reward points for a good performance and can later redeem them to obtain preferable tasks.

With such side payments, we design auction based matching mechanisms for the task assignment problem in an expert crowdsourcing platform. To validate the hypoth-
We conducted a survey with crowd workers. 92.6% of the workers were positive about the tasks assignments with side payments. Section 6 provides more details about the survey. Our contributions are as follows.

Contributions. We allow the workers to pay a premium to obtain a better match. We propose two dynamic matching mechanisms for the task assignment problem. For exogenous settings, we first develop a matching mechanism generalizing Vickrey-Clarke-Groves (VCG) mechanism, namely Split Dynamic VCG (SDV). We prove that SDV is strategyproof and k-competitive where k is the number of tasks. We show empirically that in SDV, the efficiency of matching improves by 5-10% over APSD. In endogenous settings, we propose a strategyproof matching mechanism, e-Auction. It is adapted from e-competitive, single item dynamic auction proposed in [17]. The workers cannot manipulate their arrival departure periods in e-Auction. We prove that it is e^2-competitive for efficiency, as against SDV and Arrival Priority Serial Dictatorship (APSD) are k-competitive. However, empirically APSD and SDV perform better than e-Auction.

Organization. In the next section, we review the related literature. We describe our model, notation and assumptions in Section 3. We explain how to design matching mechanisms based on auctions in Section 4. With simulations, we analyze empirical efficiency of all the mechanisms in Section 5. In Section 6, we compare SDV, e-Auction and APSD mechanisms and discuss how to relax the assumptions made in the paper. We conclude the paper in Section 7.

2 Related Work

The term crowdsourcing was introduced by Howe [11]. Since then it has attracted researchers, practitioners, entrepreneurs, industrialists etc. Currently there are thousands of websites available for crowdsourcing. It is a pull model of work where workers decide what to work on and when to work as against the traditional push model where management distributes the work among employees and monitors the progress. As it is an uncontrolled manner of getting work done, there is always a concern about the quality of the work done. Lots of research has been carried out to ensure the quality of the received answer [10, 9, 3, 15, 18, 13, 20, 1, 14]. Most of them use machine learning for the task assignments. For example, [18, 13] proposed EM based algorithms for quality management in the crowdsourcing. [20] proposed the multi-armed-bandit based algorithm to learn the qualities of the workers and analyzed it for regret. [12] discussed how to design the tasks so as to improve the quality of answers. Note that all this work is focused mainly for the requesters.

Kittur et. al. [16] studied worker’s perspective on crowdsourcing. The authors conducted user studies on AMT and proposed different techniques to improve the performance of the workers on the tasks by intelligent task design. [14, 7] considered bidding based task allocation, to elicit the costs incurred by the workers. Our paper is different from all the above as focus is on the task assignments catering to the qualified but strategic,
dynamically arriving workers’ preferences over the tasks and the bids are not for the costs incurred by the workers.

If side payments are not feasible and workers are static with ordinal preferences, the task assignment problem is same as assignment problem studied in economics. Sönmez and Ünver [19] is a survey that summarizes the results for the static assignment problem. For the dynamic endogenous workers with ordinal preferences, APSD is the only strategyproof mechanism [21]. In this paper, we use side payments to increase efficiency of the task assignment and address the problem as a mechanism design problem in auctions. For more about mechanism design theory, the interested readers are referred to [5, 6] and the references cite therein.

3 The Model and Notation

In this paper our focus is on the task assignments in an expert crowdsourcing market where workers are skilled, tasks are complex and rewards are relatively high as seen in Example (1). For designing matching mechanisms in this setting, we make the following assumptions.\(^3\)

Assumptions:

- The number of tasks and the corresponding qualified workers is not so large that the workers will have difficulty in reporting their preferences. For example, on oDesk, on a particular day only a small portion of the tasks may be relevant for a software professional with specific skills.
- All the workers satisfy pre-qualification for the tasks.
- We focus on a time window during which each worker takes up only one task. We discuss how to relax this assumption in Section 6.
- The workers may strategize their preferences to get preferable tasks.

There are \(k\) tasks with \(i^{th}\) task denoted as \(r_i\). \(W = \{w_1, \ldots, w_k\}\) are eligible aspirants for these tasks who arrive dynamically to the market. Upon arrival in the time slot \(arr_j\), a worker \(w_j\) observes the tasks in the system and reports his preferences over the tasks and indicates a deadline \(dep_j\) until when he can accept a task. If an impatient worker needs a task immediately, he can indicate \(dep_j = arr_j\). We capture the preferences of a worker by a valuation he assigns to the task he receives. Let \(b_{ij}\) be the value that \(w_j\) assigns to the matching where he is matched with the task \(r_i\). We also interpret these numbers as a *bid*, maximum premium a worker is willing to pay, for the task. If a worker does not have any preferences over the tasks, he can set the preference to be a zero vector. The notation used in the paper is described in Table 1. With this notation, we now define matching mechanism and desirable properties.

Matching Mechanisms. The task assignment problem is divided into two parts: (i) A *matching algorithm* \((\mu)\) - It produces \((w, r)\) pairs, where the worker \(w\) is assigned with the task \(r\).\(^4\) A task should be assigned to a worker before he leaves the system. (ii)

\(^3\) It should be noted that, the settings of expert crowdsourcing are different than microtasking where the workers finish the task quickly and move on to a next task immediately.

\(^4\) \(\mu\) takes \(b_{js}, arr_j, dep_j\) as inputs and produces a bipartite matching. However to simplify notation, we just refer to \(\mu\) as a bipartite matching.
Table 1. Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Total number of tasks (workers)</td>
</tr>
<tr>
<td>R</td>
<td>The set of tasks</td>
</tr>
<tr>
<td>r_i</td>
<td>i^{th} Task</td>
</tr>
<tr>
<td>w_j</td>
<td>j^{th} worker</td>
</tr>
<tr>
<td>$\text{arr}_j, \text{dep}_j$</td>
<td>Arrival time and departure time for w_j</td>
</tr>
<tr>
<td>$R(t)$</td>
<td>The tasks not assigned till t.</td>
</tr>
<tr>
<td>$W(t)$</td>
<td>${w_j \ni \text{arr}_j \leq t \leq \text{dep}_j \text{ and } w_j \text{ is not been assigned any task.} }$</td>
</tr>
<tr>
<td>$AW(t)$</td>
<td>${w_j</td>
</tr>
<tr>
<td>$DW(t)$</td>
<td>${w_j</td>
</tr>
<tr>
<td>b_j</td>
<td>(b_{ij}) Preference of w_j over the tasks</td>
</tr>
<tr>
<td>μ</td>
<td>Matching algorithm</td>
</tr>
<tr>
<td>p_j</td>
<td>Payment made by worker w_j to the platform for the matching.</td>
</tr>
<tr>
<td>\mathbf{p}</td>
<td>$=(p_j)_{j \in W}$</td>
</tr>
</tbody>
</table>

Payment: It decides a payment to be paid by the users for receiving preferable matches. We refer to a matching algorithm along with payments as a matching mechanism.

Desirable game theoretic properties of matching mechanisms. Let $\mathcal{M} = (\mu, p)$ be a given mechanism.

(i) **Strategyproof** Let $b_{-j} = (b_1, \ldots, b_{j-1}, b_{j+1}, \ldots, b_k)$ and w_j be assigned with $r_{i_1} = \mu(w_j)$ with payment p_j when he reports his preference as b_j and remaining workers report b_{-j}. Let $r_{i_2} = \mu(w_j)$ when he reports b'_j while remaining workers report b_{-j} and his payment be p'_j. We say \mathcal{M} is strategyproof, if $\forall w_j$, $b_{i_2} - p_j \geq b_{i_1} - p'_j \forall b_{-j}$.

That is, by misreporting the preferences over matching, the workers cannot gain.

(ii) **Efficiency** Let V^μ be the valuation that all the workers assign to their match. I.e., $V^\mu = \sum_j b_{\mu(w_j)}$. We say μ is efficient if μ selects a matching that maximizes V^μ. If all the preferences are known before-hand, we can always find an optimal matching. This is called as off-line optimal (OFF-OPT) solution and $V^{OFF-OPT}$ is valuation of the off-line optimal solution.

(iii) **Competitive Ratio** No matching mechanism can predict preferences of the workers yet to arrive and make perfect decisions for the departing workers. Hence in dynamic (on-line) settings, it is impossible to achieve efficiency. The Composite ratio is a widely used measure of the performance of on-line algorithms. It measures how bad the solution found by the algorithm can be as compared to an optimal solution. An on-line algorithm is c-competitive if,

$$\mathbb{E}[V^\mu] \geq \frac{1}{c} \mathbb{E}[V^{OFF-OPT}] \ \forall (b_1, \ldots, b_k)$$

The expectation is with respect to random orderings of the workers. Instead of expectation if we consider this ratio for each instance, in adversarial settings, it will be
arbitrarily bad. Hence we measure it under a random hypothesis where all orders in
which the workers arrive are equally likely.

We model task assignment as a dynamic auction. In the next section, we propose two
matching mechanisms having different competitive ratio. We refer to the first matching
mechanism, which is VCG based, as SDV. We also propose a matching mechanism
e-Auction to improve efficiency. In both the mechanisms, matching algorithms are in-
duced by the underlying auction’s allocation rules.

4 Matching Mechanisms: Dynamic Auctions

In this section, we first describe APSD. We then propose our mechanisms.

4.1 Arrival Priority Serial Dictatorship (APSD)

Zou et. al. [21] proved that in endogenous settings, APSD is the only strategyproof
mechanism for assignment problem when the preferences are ordinal. In this mecha-
nism, the workers are assigned a priority based on their arrival time and the tasks are
assigned according to the priority of the workers. It is k-competitive for efficiency and
in general, it can lead to inefficient task assignments.

4.2 SDV: Dynamic VCG AUCTION

Let the system have tick events which are a collection of time slots. We say a tick event
occurs when the system time matches with one of the time given in the list. Whenever
a tick event occurs, the matching of the unassigned and available workers happens. At
tick events, the platform solves an optimization problem described in (1). Let \(t' \) be
the tick events defined by the system, \(x_{ij} \) be an indicator variable indicating whether
the task \(r_i \) is assigned to \(w_j \) or not, and \(\alpha_{ij} = \beta_{ij} \).

\[
\begin{align*}
\max & \sum_{i \in R(t'), j \in W(t')} \alpha_{ij} x_{ij} \\
\text{s.t.} & \sum_i x_{ij} \leq 1 \quad \forall i \in R(t') \\
& \sum_j x_{ij} \leq 1 \quad \forall j \in W(t') \\
& x_{ij} \in \{0, 1\}
\end{align*}
\]

For the matching mechanism SDV = \((\mu^{SDV}, P^{SDV}) \), \(\mu^{SDV} \) is defined in Algorithm 1.

Payment \(P^{SDV} \): At the tick event \(t' \), let \(OPT^{t'} \) be the value of the above optimization
problem (1). VCG payment for \(w_j \) who is matched at \(t' \):

\[
p_{j}^{SDV} = V^*_j - OPT^t_{-j}
\]

where, \(V^*_j = OPT^{t'} - \beta_{1,j} \). \(OPT^t_{-j} \) is the optimal value obtained by solving the
above optimization problem with workers \(W(t) \setminus w_j \).

□
ALGORITHM 1: Matching Algorithm μ^{SDV}

| Input: | Workers’ preferences (b_{ij}) |
| Output: | A matching |

1. $t = 1$, $R(1) = R$, $W(1) = AW(1)$
2. if $t \in \{t'\}$ then
3. Solve Optimization Problem (1)
4. if $x_{ij} = 1$ then
5. $\mu(w_j) = r_1$ and $\mu(r_i) = w_j$.
6. Determine p_{SDV}^j
7. $t \leftarrow t + 1$
8. $R(t) \leftarrow R(t - 1) \setminus \{r_i : \exists j \ni x_{ij} = 1\}$;
 $W(t) \leftarrow \{W(t - 1) \setminus \{w_j : \exists i \ni x_{ij} = 1\}\} \cup AW(t)$
9. if $W(t) == \emptyset$ OR $R(t) == \emptyset$ then
10. STOP.
11. else
12. Go to Step 2

Note that (i) the duration between two consecutive tick events is chosen independent of the users’ preferences. (ii) It can be a minute or can be hours depending upon the task complexity. While defining tick events, the system ensures that every worker is present at least for one tick event. For example, the system can add all the departure periods of the workers in the list of tick events.

Even though integer programs are NP-hard, this particular optimization problem can be solved in polynomial time as this is a maximum weight bipartite matching between the tasks and the workers having edges from each task r_i to each worker w_j with weight $\alpha_{ij} = b_{ij}$. We illustrate SDV mechanism with an example.

Table 2. SDV: Example Preferences

w_1	$r_1 \succ r_2 \succ r_3$	$b_1 = (10, 9, 0)$
w_2	$r_2 \succ r_1 \succ r_3$	$b_2 = (5, 12, 1)$
w_3	$r_1 \succ r_3 \succ r_2$	$b_3 = (15, 5, 10)$

Example 2. Consider the same scenario as depicted in Fig. 1 with bids as indicated in Table 2. Let the tick events t' be Monday evening 5pm (t=1) and Tuesday evening 5pm (t=2). At $t = 1$, the platform solves a maximum weight bipartite matching and assigns r_1 to w_1 and r_2 to w_2. VCG payments are 0 for both of them. At $t = 2$, r_3 is assigned to w_3 and his payment is also 0. Instead of $(5, 12, 1)$ if w_2 has preference $(12, 5, 1)$, he is assigned to task r_1 and needs to pay 1 whereas w_1 gets r_2 at no cost.

From the above example, it is clear that the workers may not have to pay if their interests are not conflicting. As our goal is not to make money out of such matching mechanisms, low payments are acceptable. We now see the analysis of SDV.
Proposition 1. SDV is strategyproof when workers are exogenous.

Proof: We partition the workers using tick events such that in each subgroup, all the workers are available simultaneously and treat each of the subgroups as an independent problem. Each sub-problem is solved using VCG auction. No worker can manipulate SDV because, his preference cannot choose which VCG auction to be part of and each VCG auction is strategyproof. Thus, SDV is strategyproof.

Proposition 2. SDV is k-competitive for efficiency of the matching.

Proof: Let $V_{\mu_{SDV}}$ be the total valuation of the matching in SDV. For a given preference profile, let r_{i_1} be a task of a worker w_j in an optimal assignment and let r_i be a task assigned to him by SDV. The expected valuation of the matching to him be $E[b_{ij}]$ where expectation is with respect to orderings of the workers. With the random ordering hypothesis, each agent is first to arrive with probability $\frac{1}{k}$.

\[\Rightarrow b_{ij} \geq b_{i^*j} \text{ with probability } \frac{1}{k} \]

\[\Rightarrow E[b_{ij}] \geq \frac{1}{k} b_{i^*j} \]

\[\Rightarrow \sum_{w_j} E[b_{ij}] \geq \sum_{w_j} \frac{1}{k} b_{i^*j} \]

\[\Rightarrow E[V_{\mu_{SDV}}] \geq \frac{1}{k} V^{OFF-OPT} \]

The above holds true for any preference profile and hence SDV is k-competitive.

This bound is tight up to an additive constant 1 from the following preference. w_1 has valuation $b_1 = (k^2, 0, \ldots, 0)$. All the other workers have valuation $(\epsilon, 0, \ldots, 0)$, where ϵ is very small positive real number. The optimal solution has value k^2 and SDV will achieve this with probability $\frac{1}{k}$. For all the instances where w_1 does not arrive before the first tick event where matching happens, SDV has valuation of ϵ leading to competitive ratio arbitrarily close to k.

This efficiency is based on the valuations that the workers assign to the matching and not based on payments or costs incurred by workers. To improve on the high competitive ratio of SDV, we propose e-Auction matching mechanism.

4.3 e-Auction

In [17], the following strategyproof auction was proposed for selling a single item to dynamically arriving k agents.

Single Item Dynamic Auction. Auctioneer waits until it receives $\frac{k}{e}$ bids. p, q be the two highest bids received so far. If the agent with bid p is available, allocate the item to him at price q. Otherwise, whenever an agent with bid higher than p arrives, allocate the item to that agent at price p. It is shown that the above auction is e-competitive for efficiency.
Multi Item Dynamic Auction. We adopt the above auction to our setting which is combinatorial. We have k items (Tasks) to be sold (assigned) to k agents (the workers) each requiring only one. We call the new matching mechanism e-Auction = (μ^{eA}, P^{eA}). The algorithm μ^{eA} is described in Algorithm 2. Recall that the workers not having preferences for a task(s), put a bid of '0' and k being the number of workers, step 1 of the above algorithm will not wait indefinitely.

Payment P^{eA}: Each worker who wins the task in the first $\frac{k}{e}$ bids, has to pay the second highest bid received up to the first $\frac{k}{e}$ bids for the task. Other workers, if they receive a task, pay the highest bid received up to the first $\frac{k}{e}$ bids for that task.

Proposition 3. e-Auction is strategy proof.

Proof: In e-Auction payment, for all $w_j \in W$, p_j is independent of b_j and if a worker is winner in multiple tasks, he is assigned a task with the highest $b_{ij} - p_j$. Hence no worker has any incentive to misreport his bid. If an worker reports the late arrival than true arrival, it does not increase his chance of winning on any of the tasks. If the worker tries to report departure before $\frac{k}{e}$ workers have arrived, he will not get the task. After that, does not matter when is his departure. Thus, no worker can gain anything by late-arrival or early departure.

Proposition 4. e-Auction is at-most e^2-competitive for efficiency of the matching.

Proof: Let R' be the set of tasks assigned to the workers by e-Auction and W' be the set of workers who receive a task. Let $r_i = \mu^{eA}(w_j)$, $V^{\mu^{eA}} = \sum_{j \in W'} b_{ij} = \sum_{i \in R'} b_{ij}$.

For a single task case, from the classic secretary problem analysis, with probability $\frac{1}{e}$, each task will be assigned to the worker having highest valuation for that task. Say $\mu^{eA}(r_{is}) = w_{js}$. With probability $\frac{1}{e}$, $b_{ijs} \geq b_{isj}$. In particular, $b_{ijs} \geq b_{isj'}$ where $w_{j'}$ is the OFF-OPT assignment of the task r_{is}.

\[\square\]
In our settings, each worker can take up only one task. Say for the task r_i, w_j is the highest bidder. It may happen that a worker w_j is the highest bidder at multiple tasks, and this may lead to the task r_i being not assigned. If a winner for r_i is not a winner at any other task, then definitely, the task assigned. If the valuations of the workers are independent and are identically distributed, each worker is equally likely to be winner at all the tasks. Hence, probability that a worker is winner exactly at one task is $(1 - \frac{1}{e})^{k-1}$ which is $\frac{1}{e}$ for large k.

\[\Rightarrow \text{Probability that a task is assigned } \geq \frac{1}{e} \]

\[\Rightarrow \mathbb{E}[V_{\mu^*}] = \sum_{i \in R'} \mathbb{E}[b_{ij}] \]
\[\Rightarrow \mathbb{E}[V_{\mu^*}] \geq \sum_{i \in R} \frac{1}{e} \mathbb{E}[b_{ij}] \]
\[\Rightarrow \mathbb{E}[V_{\mu^*}] \geq \sum_{i \in R} \frac{1}{e} \max_j b_{ij} \]
\[\Rightarrow \mathbb{E}[V_{\mu^*}] \geq \sum_{i \in R} \frac{1}{e} \cdot V^{OFF-OPT} \]

This proves the claim.\(^5\)

e-Auction is an interesting auction as on worst case analysis, it has a much lower competitive ratio as compared to SDV. The disadvantage of e-Auction is that some tasks may not get assigned in e-Auction.

5 Evaluation of the Mechanisms

The proposed mechanisms in this paper inherently hypothesize that workers will participate in bidding for the tasks. To evaluate this hypothesis, we conducted a survey with crowd workers.

5.1 Survey: Bidding based Task Assignments

We conducted the survey on Amazon Mechanical Turk (AMT).\(^6\) To safeguard against spammers, only workers with high acceptance over at least 5000 HITs were allowed to participate in the survey. The survey included java questions to ensure that the participant has java programming knowledge. We told workers that there are java programming tasks having a reward of 200\(^7\) and we are researching about possibility of bidding based task allocation for high paying tasks. We asked the workers whether they had worked on crowdsourced programming tasks and will they be willing to bid to the platform in such task assignments and how much. The workers were paid 0.1 for participation and bonus of 0.9 to those who did well on java questions. 56 different workers participated. 75% of the participants claimed that they had worked on crowdsourced programming tasks. 45% were proficient in Java. 92.8% of all the participants

\(^5\) Note that this is upper bound on competitive ratio.

\(^6\) http://mturk.com

\(^7\) Note that we are referring to expert crowdsourcing tasks and not the microtasks. Hence, such rewards are feasible.
and all of the Java proficient responded positively for participating in the bidding based task assignments. We observed that the workers are interested in bidding aggressively on a task where their chance of getting the task is higher over the task they actually prefer.

This survey supports the notion of premium to be charged in the form of bids for the task-assignments in expert crowdsourcing environment. With this positive feedback from the workers, we further evaluate the mechanisms for empirical efficiency. We perform the empirical analysis by simulations.

5.2 Empirical Evaluation

We simulated the mechanisms by generating random preference profiles and arrival-departure for the users. For arrival of the workers, we assume the workers arrive in the system according to a Poisson process with mean λ and wait in the system according to an exponential distribution with mean $\mu = 2$. We used the following three generative models for the preferences of the workers.

- **I Uniform**: For each task, all the workers’ bids are generated uniformly at random from interval $[0, 1]$.
- **II Single Peaked**: Each worker’s ordinal preference over the tasks is generated using uniform distribution. His bid for the most desirable task is drawn uniformly at random from $[1, 2]$. However, his bid for i^{th} ranked tasks is $\frac{1}{i}$ of his the most desirable task.
- **III Single Peaked with Popularity**: In this model, we assume certain tasks are more desirable than the others. Here, the workers ordinal preferences are drawn according to the popularity. And these preferences are converted to bids in the same manner as in Single Peaked case. The ordinal preferences with popularity $(\phi_1, \phi_2, \ldots, \phi_k)$ are generated as described below.
 - $R_1 = \{1, 2, \ldots, k\}$ A task r_i is selected as the most preferred tasks from R_1 with probability $\frac{\phi_i}{\sum_{l \in R_1} \phi_l}$. Let it be, r_j.
 - $R_2 = R_1 \setminus \{r_j\}$. Now the next best task is sampled from R_2 with probabilities proportional to $\frac{\phi_i}{\sum_{l \in R_2} \phi_l}$ and so on.

For each of these three generative models, with $k = 30$, we generated 10,000 different preference profiles and studied empirical efficiency by considering the average valuation of the matching per worker per task by varying λ. In SDV, we used tick events generated by workers arrival. That is, every worker is assigned a task as soon as he arrives.

Figure 2 shows empirical efficiency SDV, APSD, ϵ-Auction and OFF-OPT. It is the average valuation of a matching per worker per task by varying λ. In SDV, we used tick events generated by workers arrival. That is, every worker is assigned a task as soon as he arrives.

Figure 2 shows empirical efficiency SDV, APSD, ϵ-Auction and OFF-OPT. It is the average valuation of a matching per worker per task by varying λ. Clearly, SDV improves over APSD by 2-3% for $\lambda \in (\frac{k}{6}, \frac{k}{4})$ when the workers are of type I. For workers of type II and III, this improvement is 5% and 10% respectively. This arrival rate matches on average λ workers together. Hence, if on average all the workers are willing to wait till λ workers to arrive, they clearly see an improvement in quality of matching by SDV. From simulations, it is clear that, though ϵ-Auction has better worst
In the next section, we provide a unified comparison of the mechanisms discussed in the paper. We also describe how to relax some of the assumptions.

6 Discussion

The crowdsourcing platform needs to propose/assign tasks to the workers. To keep users interested in the platform, it needs to achieve efficiency in such task assignments. Strategic workers may manipulate the task assignment by misreporting their preferences. So we need strategyproofness. Towards this, we focused on expert crowdsourcing and proposed two matching mechanisms namely, SDV and e-Auction. Table 3 compares both the proposed mechanisms for strategyproofness, efficiency and empirical efficiency for type III workers described in the previous Section.

APSD does not need any side payments as well as works in endogenous settings. SDV assumes exogenous settings. Both the mechanisms have same guarantee on competitive ratio. However, empirically SDV performs better than APSD.
- In endogenous settings, we proposed e-Auction which has better competitive ratio. However, we observe in experiments, it performs poor for average case efficiency. Thus, if we can assume exogenous settings, we propose to use SDV. If side payments are not desired or in endogenous settings, one can use APSD proposed by Zou et. al.[21]. If stronger worst case guarantee on competitive ratio is needed, we propose to use e-Auction.

Note that, typically to best of our knowledge there is no prior work in online mechanism with competitive ratio guarantees when private information is multi-dimensional.

The expert crowdsourcing model. Note that the expert crowdsourcing settings in this paper are different from the widely referred crowdsourcing of micro tasks. Hence the assumptions made in the paper, may not model the microtasking environment well. We demonstrate how to relax some of the assumptions.

(a) If the workers want the tasks without waiting, all the mechanisms are valid. Either workers can set, $arr_j = dep_j$ or the tick events can occur at faster rates. As the analysis is for worst case, it is still valid. However, in the long run, users may realize that quality of matching is better if everybody is patient.

(b) If a worker is unable to determine preferences or is not interested in reporting preferences, he can indicate it by $b_{ij} = 0$. However, if workers indicate a preference, they get preferable tasks as compared to not indicating preferences.

(c) The tasks in expert crowdsourcing are typically complex and require more time to finish them. We focus on a time-window during which only one such task can be performed. Hence, we make the assumption that each worker takes up one task. If we relax that, all mechanisms can adopt with the claimed properties. Say each worker takes up l tasks:

- For e-Auction, we can still set prices with the same rule and let the worker select up to l most preferred tasks if he is winner at multiple tasks. In fact, the competitive ratio improves with increased competition. For example, if workers can take up up to k tasks, the competitive ratio will be e.
- For SDV, each instance being static VCG, the strategyproofness will hold true. (The optimization problem will change accordingly).

(d) All the mechanisms are valid even of the number of tasks is not same as the number of workers. However the competitive analysis will change.

Table 3. Comparison of mechanisms SDV, e-Auction and APSD

<table>
<thead>
<tr>
<th></th>
<th>SDV</th>
<th>eA</th>
<th>APSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>StrategyProofness</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Endogenous</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Competitive Ratio</td>
<td>k</td>
<td>e^*</td>
<td>k</td>
</tr>
<tr>
<td>Empirical Competitive Ratio</td>
<td>1.25</td>
<td>1.76</td>
<td>1.38</td>
</tr>
</tbody>
</table>
7 Conclusion

In this paper, we addressed task assignments to dynamic workers in expert crowdsourcing platforms through matching mechanisms. We introduced the notion of a premium to be paid by the workers to get preferable matches. The monetary transfers help in achieving strategyproofness and efficiency. We proposed two dynamic matching mechanisms, SDV for exogenous workers and ϵ-Auction for endogenous workers. We proved various properties of these mechanisms and in the previous section we summarized our results.

References